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1

Introduction to Concurrency

Concurrency has been with us for a long time. The idea of different
tasks being carried out at the same time, in order to achieve a
particular end result more quickly, has been with us from time
immemorial. Sometimes the tasks may be regarded as independent of
one another. Two gardeners, one planting potatoes and the other
cutting the lawn (provided the potatoes are not to be planted on the
lawn!) will complete the two tasks in the time it takes to do just one of
them. Sometimes the tasks are dependent upon each other, as in a
team activity such asis found in a well-run hospital operating theatre.
Here, each member of the team has to co-operate fully with the other
members, but each member has his/her own well-defined task to carry
out.

Concurrency has also been present in computers for almost as
long as computers themselves have existed. Early on in the
development of the electronic digital computer it was realised that
there was an enormous discrepancy in the speeds of operation of
electro-mechanical peripheral devices and the purely electronic
central processing unit. The logical resolution of this discrepancy was
to allow the peripheral device to operate independently of the central
processor, making it feasible for the processor to make productive use
of the time that the peripheral device is operating, rather than have to
wait until a slow operation has been completed. Over the years, of
course, this separation of tasks between different pieces of hardware
has been refined to the point where peripherals are sometimes
controlled by a dedicated processor which can have the same degree of
“intelligence” as the central processor itself.

Even in the case of the two gardeners, where the task that each
gardener was given could be considered to be independent of the other,
there must be some way in which the two tasks may be initiated. We
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may imagine that both of the gardeners were originally given their
respective tasks by the head gardener who, in consultation with the
owner of the garden, determines which tasks need to be done, and who
allocates tasks to his under-gardeners. Presumably also, each
gardener will report back to the head gardener when he has finished
his task, or maybe the head gardener has to enquire continually of his
underlings whether they have finished their assigned tasks.

Suppose, however, that our two gardeners were asked to carry
out tasks, both of which required the use of the same implement. We
could imagine that the lawn-mowing gardener requires a rake to clear
some debris from the lawn prior to mowing it, while the potato planter
also requires a rake to prepare the potato bed before planting. If the
household possessed only a single rake, then one or other gardener
might have to wait until the other had finished using it before being
able to complete his own task.

This analogy serves to illustrate the ways in which peripheral
devices may interact with central processors in computers. Clearly if
we are asking for a simple operation to take place, such as a line
printer skipping to the top of the next page, or a magnetic tape
rewinding, it suffices for the Central Processing Unit (c.p.u.) to initiate
the operation and then get on with its own work until the time when
either the peripheral device informs the c.p.u. that it has finished (i.e.
by an interrupt), or the c.p.u. discovers by (possibly repeated)
inspection that the operation is complete (i.e. by polling).
Alternatively, the peripheral device may have been asked to read a
value from an external medium and place it in a particular memory
location. At the same time the processor, which is proceeding in its
own time with its own task, may also wish to access the same memory
location. Under these circumstances, we would hope that one of the
operations would be delayed until the memory location was no longer
being used by the other.

1.1 Reasons for Concurrency

Concurrent programming as a discipline has been stimulated
primarily by two developments. The first is the concurrency which had
been introduced in the hardware, and concurrent programming could
be seen as an attempt to generalise the notion of tasks being allowed to
proceed largely independently of each other, in order to mimic the
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relationship between the various hardware components. In particular,
the control of a specific hardware component is often a complex task
requiring considerable ingenuity on the part of the programmer to
produce a software driver for that component. If a way could be found
by which those aspects of the driver which are concerned with the
concurrent activity of the device might be separated off from other
parts in the system, the task is eased tremendously. If concurrent
programming is employed, then the programmer can concern himself
with the sequential aspects of the device driver, and only later must he
face the problem of the interactions of the driver with other
components within the system. In addition, any such interactions will
be handled in a uniform and (hopefully) well-understood way, so that
(device-) specific concurrency problems are avoided.

The second development which leads directly to a
consideration of the use of concurrent programming is a
rationalisation and extension of the desire to provide an operating
system which would allow more than one user to make use of a
particular computer at a time. Early time-sharing systems which
permitted the simultaneous use of a computer by a number of users
often had no means whereby those users (or their programs) could
communicate with one another. Any communication which was
possible was done at the operating system kernel level, and this was
usually a single monolithic program which halted all the user tasks
while it was active. Users of such systems were not generally
concerned with communicating with each other, and the only form of
resource sharing that they required was in the form of competition for
resources owned by the operating system. Later systems which came
along began to require the possibility of users sharing information
amongst themselves, where such information was not necessarily
under the control of the operating system. Data could frequently be
passed from one user program to another much more conveniently
than using a cumbersome mechanism of asking one program to write
data into a file to be read by the other program.

The introduction of concurrent programming techniques was
also recognised to be a useful tool in providing additional structure to a
program. We remarked earlier that the task of constructing a device
driver is considerably simplified if the concurrency aspects can be set
aside, and then added in a controlled way. This is very similar in
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concept to some of the well-established techniques of structured
programming, in which the communication between the various parts
of a (sequential) program is strictly controlled, for example through
the use of procedures and parameter lists. Structured programming
also leaves open the possiblity of delaying the coding of various parts of
the program until a later, more convenient time, allowing the writer of
the program to concentrate on the specific task on hand.

In a similar way, the writer of a concurrent program may write
a sequential program, leaving aside the questions of the interaction
with other concurrently active components until the sequential
program is complete and, possibly, partially tested. We suspect that
unstructured parallelism in programming would be even more
difficult to manage than an unstructured sequential program unless
we were able to break down the concurrency into manageable sub-
units. Concurrent programming may therefore be regarded as another
manifestation of the “divide and conquer” rule of program
construction. Such methodologies are also useful as a way of making
programs more readable and therefore more maintainable.

1.2 Examples of Concurrency

There are many useful examples of concurrency in everyday
life, in addition to the example of the two gardeners mentioned above.
Any large project, such as the building of a house, will require some
work to go on in parallel with other work. In principle, a project like
building a house does not require any concurrent activity, but it is a
desirable feature of such a project in that the whole task can be
completed in a shorter time by allowing various sub-tasks to be carried
out concurrently. There is no reason why the painter cannot paint the
outside of the house (weather permitting!), while the plasterer is busy
in the upstairs rooms, and the joiner is fitting the kitchen units
downstairs. There are however some constraints on the concurrency
which is possible. The bricklayer would normally have to wait until
the foundations of the house had been laid before he could begin the
task of building the walls. The various tasks involved in such a project
can usually be regarded as independent of one another, but the
scheduling of the tasks is constrained by notions of “task A must be
completed before task B can begin”.
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A second example is that of a railway network. A number of
trains may be making journeys within the network, and by contrast
with the previous example, when they start and when they end is
generally independent of most of the other journeys. Where the
journeys do interact though, is at places where routes cross, or use
common sections of track for parts of the journeys. We can in this
example regard the movement of the trains as programs in execution,
and sections of track as the resources which these programs may or
may not have to share with other programs.

In some cases, the concurrency is inherent in the situation
being considered. Any complex machine, or large plant such as a power
station, chemical works or oil refinery, consists of identifiable
components which have to be continuously interacting with other
components. In a quality-controlled environment, for example, the
product of the manufacturing component of the system is subjected to
certain test procedures, which in turn provide information which may
modify the way in which the manufacturing component behaves.
Clearly these two components need to be constantly active and in
constant communication with each other for the whole system to work
properly.

An example of concurrency directly related to computing and
programming can be seen by considering the evaluation of an
arithmetic expression. Suppose we wish to evaluate the expression:

(a*b + c*d**2)*(g + f*h)

We assume that the identifiers a, b, ¢, etc. have values associated with
them, and that the priority rules for evaluation of the expression are as
would be expected, i.e. exponentiation first, multiplication second and
addition last, modified in the usual way by the inclusion of
parentheses. A tree may be drawn (figure 1.1) showing the
interdependencies of the sub-expressions within the whole expression,
and we may use this tree to identify possible concurrency within the
evaluation. Three concurrent evaluations of sub-expressions can begin
at once, namely, a*b, d**2 and f*h. When the second and third of these
are finished, the multiplication by ¢, and the addition of g
(respectively) can take place, also in parallel. It is only after ¢*d**2
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Figure 1.1

VAR

\/ /

has been evaluated that the sub-expression a*b can be added, and then
finally the evaluation of the whole expression can be completed.

It is in the field of operating systems where concurrent
programming has been most fruitfully employed. A time-sharing
operating system, by its very nature, is required to manage several
different tasks in parallel, but even if the system is only providing
services to a single user it will be responsible for managing all the
peripheral devices as well as servicing the user(s). If the concurrent
programming facilities can also be offered to the user, then the
flexibility of concurrency as a program structuring technique is also
available to application programs. It is not our intention in this book to
deal with operating systems as a subject, but it will inevitably be the
case that operating systems will provide a fertile source of examples of

concurrent programs.

1.3 Concurrency in Programs

Any sequential program is in all probability not necessarily
totally sequential. That is, it is often the case that the statements of
the program could be re-ordered to some extent without affecting the
behaviour of the program. It is usually possible, however, to identify
those parts of the program (it is useful to think in terms of program
statements in your favourite high-level programming language) which
do depend on one another, in the sense that one statement must
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precede another. A simple example would be the case where a program
might include the statement

x:=x+1;

This statement should really only be used if there has been a previous
statement initialising the variable x, e.g.

x:=0;

We could examine any sequential program and identify all such
dependencies, and we would almost certainly find that there were
quite a number of pairs of statemer.ts for which no such dependencies
exist. In other words, it is possible to identify a partial ordering of
program statements which define the interdependencies within a
program.

Suppose, for example, that a program consisted of statements
denoted by the letters A, B, C, D, E, F, G, H, I and J. Suppose also that
we were able to write down the partial ordering as a set of relations:

A<B,A<C, A<D, C<ED<E,BK<F,
D<FE<FF<GF<HG<LH<J

where the relational operator < is meant to be interpreted as “must
precede in time”. The first property of this partial ordering we notice is
that the relation D < Fisin fact unnecessary, since it is a consequence
of the two relations D < E and E < F, this ordering relation having
the transitivity property. The partial ordering defined by these
relations may be illustrated by a directed graph as shown in figure 1.2.

1.4 An Informal Definition of a Process

It is assumed that any programmer who attempts to write
concurrent programs will have had a reasonable amount of experience
of conventional sequential programming. With this in mind, we
attempt to decompose our concurrent programming problem into a set
of sequential programs together with some controlled interaction
between them. Thus we put forward as the basic building block of a
concurrent program the sequential process (where no confusion can
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Figure 1.2
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result, we shall abbreviate this to process). Perhaps the simplest, and
also the least useful definition of a sequential process, is to describe it
as the activity performed by a processor. This however begs the
question of what is meant by a processor. We have an intuitive notion
of what a processor is, namely a device which is capable of performing
a sequence of well-defined instructions one at a time. It is largely the
case that a sequential process corresponds to an ordinary sequential
program, but the use of the word process is intended to convey an
impression of “activeness” which the word program may not. A more
formal definition of process will be attempted in the following chapter,
but for now it will suffice to describe a process as an activation of a
program or sub-program. This implies that storage has been made
available both for the code being executed and for the data upon which
that code operates. It is also useful to think for the moment of the
allocated storage space as being distincet from the storage space
available to any other process.

Using this notion of the sequential process, we can see that it
would be quite possible for two processes to be active at the same time
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and to be running the same code, i.e. one program can be associated
with two distinct processes simultaneously. Conversely, if two
programs were to be run strictly sequentially but making use of the
same storage area, we might regard them as belonging to the same
sequential process. Thus processes and programs are not the same,
although clearly “process” would be a somewhat empty concept
without an associated program. In the case where two processes are
executing identical code, and that code is pure, i.e. is never modified as
a result of its own execution, then some machines or systems may
permit two (or more) processes to access and execute the code from the
same physical storage. This has the virtue of saving on actual storage
used, but conceptually one should think of separate processes as being
totally disjoint and occupying distinct areas of storage.

The question then arises as to how processes are created and
how, if at all, they cease to exist. The simplest approach to this
problem is to imagine that processes are brought into existence as the
system begins to operate, and to continue to exist until the whole
system is halted. Such a model has great virtue in the consideration of
an operating system, which typically is required to provide services
continuously from the starting up of the system to the halting of the
machine. Similarly, a general concurrent program may have a fixed
number of processes which are initiated as soon as the program starts
to run, and remain in existence until the whole program terminates.

Some programming systems, usually in collaboration with the
underlying operating system, are capable of creating and destroying
processes dynamically. In such cases, the concurrent program clearly
has much more flexibility with regard to the way in which processes
may be created and destroyed according to the needs of the whole
program, and may affect the overall structure of the program.

1.5 Real Concurrency and Pseudo-Concurrency

It is almost always the case that a system allowing the use of
multiple concurrent processes (or its users) will require more processes
than the number of physical processors provided by the hardware. In
those rare cases where the number of concurrent processes is less than
the number of available physical processors, we shall refer to the
concurrency as real or true concurrency.
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In the more usual situation where the program (or system)
requires more processes than there are processors available, in order
not to restrict the system arbitrarily, it is necessary that some
mechanism be provided which will simulate the action of a number of
processes using a single processor only. This may be achieved by
running the processor under the control of a (preferably small)
program commonly known as a kernel. The responsibilities of the
kernel will vary from system to system, but it must provide the
abstraction of multiple concurrent processes. This is usually
implemented using some kind of time division multiplexing of the
processor. Concurrency provided in this way will be referred to as
pseudo-concurrency. A kernel which provides only the multiple-
processor abstraction is actually not very useful, and so in general a
kernel will also offer some form of inter-process communication
mechanism, and possibly some primitive operations to allow the
dynamic creation and deletion of processes. We shall discuss the
implementation of a kernel in a later chapter, and it is sufficient to
note now that provided the kernel is doing its job correctly, pseudo-
concurrency and true concurrency will be indistinguishable at the
concurrent programming level.

Since we assume that real concurrency and pseudo-
concurrency are indistinguishable at this level, the reader may be
wondering why the two terms have been introduced. In fact, it is
sometimes assumed that the fact that there is only one processor being
shared amongst all the processes makes the problems of controlling
the interaction easier. That may be so in some instances, but we hope
to show that the simple method of preventing interference, namely
preventing the processor from being multiplexed, is not the best
solution in many cases, and that by regarding pseudo-concurrency as
being indistinguishable from real concurrency, general, and usually
more satisfactory solutions to the problems of concurrent
programming can result.

1.6 A Short History of Concurrent Programming

It is often assumed that Dijkstra instigated the study of
concurrent programming in his now classic article “Co-operating
Sequential Processes”, published in 1967. Certainly in that article we
see the introduction of some now well-known problems such as “The
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Dining Philosophers”, “The Sleeping Barber” and "The Dutch Flag
Problem”, and perhaps most importantly, the critical section problem
and its solution using semaphores. This article was indeed the first to
take a “high-level” view of concurrent programming. As an aside, it is
interesting to note that the same article introduces the notion of
deadlock, and presents an algorithm which can detect the possible
presence of deadlocks.

However, a more machine-language-oriented approach to
concurrency was presented in the early 1960's, first by Conway and
then by Dennis and Van Horn. The idea of multiple threads of control
was introduced at this time, and it is interesting to observe that some
of the problems of accessing shared resources such as memory were
also addressed at that time.

Asin the development of high-level (sequential) programming
languages, researchers came to realise the problems associated with
using these low-level constructs, mainly in the area of trying to write
programs correctly and quickly, and as a result higher-level and more
restrictive constructs were invented. Thus we now see a plethora of
different techniques for providing controlled concurrent programming,
many of which we shall be examining in greater detail in the later
chapters of this book.

1.7 A Map of the Book

We shall examine the fundamental structures of concurrent
programming in the following chapter, showing how concurrent
activity may be specified and introducing the principal components
from which concurrent programs are constructed. This will include a
more formal definition of the notion of a process than that given earlier
in this chapter, and we shall also examine more closely the ways in
which processes may be created and destroyed. In chapter 3, we shall
deal in greater depth with the problems of interaction between
processes, showing how control of such interactions can be achieved
with only the minimum of assistance from the hardware, while at the
same time demonstrating that some hardware assistance is necessary.
From these small beginnings, we shall build up a whole hierarchy of
concurrency control techniques. At an appropriate stage, we shall call
for help on slightly more functionality in the hardware. This chapter
deals with the lowest level of interaction which is concerned with the
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non-interference of processes at critical points in their respective
executions. At a higher level, we shall be interested not only in the
problem of non-interference of processes, but also in the positive
interaction between them. A number of high level constructs for
communication between concurrent processes have been proposed, and
these will be dealt with in chapters 4 and 5.

In describing these higher-level programming structures for
the control of concurrency, we will show how such structures provide
more natural wayvs in which to express the solutions to concurrency
problems, in much the same way as high-level programming
languages provide a more natural way of solving ordinary sequential
programming problems than can be achieved using machine or
assembly language. It is convenient to classify the type of interaction
which takes place between concurrent processes into two classes;
shared data and message passing. In the former case, a process is
permitted to access data which is also accessible by one or more
simultaneously active processes. We shall see that difficulties can be
introduced by unconstrained simultaneous access to shared data, and
chapter 4 discusses methods by which such problems can be avoided. In
chapter 5, we examine various methods and mechanisms for passing
information between processes without the necessity for allowing
explicit access to a shared resource. In chapter 6, we illustrate some of
the principles by discussing various solutions to a particular problem
in concurrent programming, using a number of concurrent languages
which are presently available.

Finally, in chapter 7, we give some indications of how some of
the concurrency structures introduced in the earlier chapters may be
implemented, including the construction of a multiplexing kernel to
provide the illusion of multiple processors.
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Exercises

Draw the tree which represents the evaluation of the
arithmetic expression:

@**2+(c+d)*e)+(f+g*h)
How many operations does this evaluation require?

Assuming that access to a variable or constant is
instantaneous, and that each operation takes one unit of time,
how many units of time would -e required to evaluate the
expression given in exercise 1.1

(a). sequentially,
(b). concurrently, as defined by the tree structure (assuming
that sufficient processors are available to allow maximal

concurrency).

Repeat exercise 1.2, given that the time taken by each
operation is:

+ - 1 unit
* . 2units
*¥*  _ 4 units.

Given the following Pascal program:

program SimpleArithmetic;
var &, b, sum, diff : integer;

beqin
(A) a := 25;
(B) b :=17;
(c) sum := a + b;
(D) diff := a - b;

end; { SimpleArithmetic }

construct a partial ordering on the statements of the program
(labelled A, B, C and D at the left hand side of each executable

statement).
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1.5

1.6

1.7

Introduction to Concurrency

For the program given in exercise 1.4, and using the partial
ordering found, draw the corresponding acyclic graph.

In the following Pascal program, label the various iterations of
the for statements in a suitable way (for example, by the
letters A, A,, ... A, D, D,, ... D;)and hence show the extent to
which this program may also be made concurrent:

program Fibonacci;

var i : 1..5;
A : array [1..5] of integer;
F : array [0..6] of integer;

begin
(A) for i := 1 to 5 do A[i] := 0;
(B) F{o] := 0;
(C) F[1] := 1;
(D) for i := 1 to 5 do F{i+l] := F[i-1} + F[il;

end; { Fibonacci }

Examine the component actions in an everyday task such as
preparing a meal. How much concurrency is there already? To
what extent could additional concurrency be introduced if
there were two (or more) people involved instead of one? Where
do conflicts arise? What constraints are there which prohibit
the introduction of concurrent activity?



